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to 200 %). Belowground C stocks varied among wetland types with mean values of 132,101, 19, and 44 kg Cm™
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for bogs, fens, swamps, and forested peatlands, respectively. Aboveground C was nearly zero in open bogs and
fens but reached ~30 % of total C stock in swamps and ~ 15 % in forested peatlands. C stocks in tree roots and
shrubs were negligible. Despite the lower G density (per m?) of swamps and forested peatlands, these ecosystems
represented the dominant C stocks at the regional scale due to their abundance in the landscape. Overall, the four
wetland types stored an estimated 2-7 times more C than forest per unit area. Evaluating differences in C stocks
according to wetland type, while integrating peat bathymetry in calculations, can significantly improve regional

wetland conservation planning.

1. Introduction

Freshwater wetlands, particularly those with a peat deposit, are
significant carbon (C) reservoirs and are key in regulating climate as
well as supporting many other ecosystem services (Zedler and Kercher,
2005; Mitsch and Gosselink, 2015; Gardner and Finlayson, 2018). While
C stocks contained in the woody biomass of wetlands can reach levels
similar to those in upland forests (Zoltai and Martikainen, 1996; Lavoie
et al., 2005), C accumulation in their soils is estimated to greatly exceed
that of forested ecosystems (Poulter et al., 2021b). The water-saturated,
low-oxygen soil conditions of wetlands impede biomass decomposition,
leading to the accumulation of C-rich soil deposits over millennia,
making them one of the most prominent carbon sinks in terrestrial
ecosystems (Zoltai and Martikainen, 1996; Lavoie et al., 2005). Despite
the valuable role wetlands play in addressing the ongoing climate crisis,
human activities continue to cause their loss and degradation at
alarming rates worldwide (Davidson, 2014; Dixon et al., 2016; Nahlik
and Fennessy, 2016; Fluet-Chouinard et al., 2023). To reach global and
national targets for C sequestration, climate change experts have
emphasized the essential role of nature-based solutions (Griscom et al.,
2017; Seddon et al., 2021), such that wetland conservation has become
central in global conventions on mitigation and adaptation strategies
(Intergovernmental Panel on Climate, 2014, CBD Secretariat, 2022).
However, as recently reported, C stock estimates can still present sig-
nificant uncertainties since peat bathymetry is often not included in
calculations (Loisel et al., 2017), and contributions of below and
aboveground compartments to total C stock vary substantially among
wetland types at the regional scale (Poulter et al., 2021a). As decisions
on land management are mainly made at this scale, a more compre-
hensive understanding of C stock variability within and among wetland
types is essential to best guide conservation planning.

Many factors contribute to the variability of C stocks among peat-
forming wetlands. For instance, the forest cover greatly influences
where and how C is stored. Indeed, while shrubs and trees mainly
sequester C in the aboveground compartment, they also partially control
C accumulation in underlying soils through their influence on hydro-
logical processes and litter composition (Simard et al., 2007). Therefore,
forested peatlands generally accumulate less peat than open ombro-
trophic (bog) and minerotrophic (fen) peatlands primarily due to better
soil aeration and enhanced carbon oxidation facilitated by tree roots
(Blodau et al., 2004; Bhatti et al., 2006; Magnan et al., 2020). The
variability of C stocks among some wetland types has been previously
reported (Bernal and Mitsch, 2012; Nahlik and Fennessy, 2016; Magnan
et al., 2020), yet most estimates focused on boreal or tropical peatlands,
leaving the temperate region understudied (Poulter et al., 2021a).
Despite growing evidence across different biomes that the belowground
compartment of wetlands has a higher storage capacity than the
aboveground one (Magnan et al., 2020; Beaulne et al., 2021; Meng et al.,
2021; Poulter et al., 2021a), further scrutiny of this comparison is
needed to refine regional-scale C stock estimates and enhance our un-
derstanding of wetland C dynamics.

C stock density (per unit area) also varies greatly within individual
wetlands because of the complex bathymetry of peat basins (Beilman
et al., 2008; Buffam et al., 2010; Fyfe et al., 2014). Studies have sug-
gested that relying solely on data from single peat cores, typically taken

near the center of wetlands or at their thickest peat section, and ignoring
within-site heterogeneity, is likely to overestimate soil organic C (SOC)
(Van Bellen et al., 2011; Yu, 2012; Fyfe et al., 2014; Pluchon et al., 2014;
Loisel et al., 2017). For example, in three bogs of eastern Canada, Van
Bellen et al. (2011) reported overestimates in the range of 23 % to 61 %,
while Loisel et al. (2014) reported an overestimate of 30-40 % for a bog
in Sweden. In parallel, most studies have reported SOC values for top
peat layers only (< 1 m), thus likely underestimating stocks by more
than two-fold since accumulations can reach several meters in certain
contexts and C density usually increases with depth, (Tarnocai, 2009;
Chimner et al., 2014; Fyfe et al., 2014; Sothe et al., 2022). Although full
characterization of peat bathymetry along with complete SOC profiles
might represent the ideal way to increase the accuracy of SOC estimates,
this is not always feasible due to time-resource constraints. Therefore,
time-efficient approaches to evaluating actual belowground C stocks of
wetlands, considering peat basin shapes, are necessary to ensure
informed land management decisions.

This study aims to characterize the variability in C stocks among and
within dominant types of freshwater wetlands of southeastern Canada.
More specifically, we aimed to (1) compare peat decomposition and SOC
profile among wetland types, (2) investigate peat thickness and SOC
heterogeneity within sites and compare approaches to estimate SOC at
the site scale, (3) compare above and belowground C stocks across
wetland types, and (4) examine how our results apply to the entire study
region. We hypothesized that SOC would increase with peat depth and
that accounting for peat basin shapes would significantly affect carbon
stock estimates. We further hypothesized that the belowground
compartment would dominate the total C stock, even in swamps typi-
cally not recognized for their peat component. To address these objec-
tives, we collected soil cores in 57 wetlands that encompassed the four
dominant wetland types of the study region (bogs, fens, swamps, and
forested peatlands), measured peat thickness at multiple locations
within each site and calculated the amount of organic C contained in
peat, shrubs and trees, including roots.

2. Material and methods
2.1. Study area and sampling sites

The study was conducted in the Greater Quebec City region (~1050
km?, ~582,000 inhabitants), Qc, Canada, consisting mainly of natural
habitats: forests (51 %), wetlands (7 %), and aquatic habitats (3 %).
Agriculture occupies 9 % of the area, while other anthropogenic land-
cover types reach ~30 %. The regional climate is humid continental,
with warm summers and severe winters with strong seasonality. The
mean annual temperature is ~4 °C, with average maximums near 19 °C
in July and — 11 °C in January (https://climate.weather.gc.ca). The
mean annual total precipitation is ~1200 mm, of which ~25 % falls as
snow. Among the freshwater wetlands considered in this study, there are
38 bogs, 79 fens, 1636 swamps, and 430 forested peatlands, covering a
total of 4964 ha (Beaulieu et al., 2014; Table 1). These represent 86 % of
all wetland area within the study region, where shallow waters, marshes
and wet prairies (not included in this study) occupy 5 %, 8 % and 1 %,
respectively. This nomenclature follows the Quebec wetland classifica-
tion system (Buteau et al., 1994) that was used by Ducks Unlimited
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Table 1

Summary statistics of the four dominant wetland types found in the study area.
Wetland type Site area (ha) Number  Total area

- . (ha)
Median Mean  Min Max
Bogs 1.2 1.9 0.1668 7.9 38 73
Fens 0.7 2.2 0.0013 31.8 79 176
Swamps 0.6 1.7 0.0004 117.0 1636 2763
Forested 1.1 4.5 0.0014 201.7 430 1953
peatlands

Total - - - - 2183 4964

Canada (DUC) to map wetlands in southern Québec (Beaulieu et al.,
2014). It separates forested and open wetlands using the cover of woody
species taller than 4 m (open wetland <25 % < forested wetlands), as
well as organic-soil and mineral-soil wetlands using the thickness of the
peat deposit (mineral-soil <30 cm < organic-soil). Consequently, bogs
and fens are open wetlands on organic soils, dominated respectively by
ericaceous plants and sphagnum mosses in bogs, and by graminoids and
brown mosses in fens. Swamps and forested peatlands, on the other
hand, are forested wetlands found on mineral and organic soils,
respectively (though swamps can occasionally accumulate peat). It
should be noted that the wetland maps produced by DUC are based on
tele-detection and photointerpretation using multiple products. Data on
depth of peat deposit is not available for southern Québec, and this
criterion is not used in their photo-based classification, leading to some
potential errors in distinguishing between swamps and forested peat-
lands. While wetlands could have been reclassified following our field
measurements using average peat depth values, we decided to keep each
site within its original category to reflect the actual variability that can
be found within each type under this classification. We selected 57 sites
for sampling, considering both accessibility and balanced representation
of the four wetland types. We also selected sites with minimal to no
human impact using a land development index (LDI) within a buffer of
100 m around each site (See SI for details). This led to the sampling of 9
bogs, 14 fens, 14 swamps, and 20 forested peatlands (Fig. 1). All studied
swamps had >30 % soil organic matter content (see results). Thus, we
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refer to all wetlands considered in this study as organic-soil wetlands
(Joosten and Clarke, 2002).

2.2. Woody above and belowground biomass

In each site, we estimated the aboveground C stock density (kg C m”
2 of trees and shrubs in two 400 m> plots (20 x 20 m). One plot was
located where the thickest peat deposit was found, and the other at a
midpoint between the latter and the wetland margin. We ensured that
the plant communities at both sampling sites were representative of the
dominant plant community of the site. In each plot, we first evaluated
the diameter at breast height (DBH; 1.3 m) of all trees taller than 4 m,
classifying them into eleven categories: [2-5[ c¢cm; [5-10[ cm; [10-15[
cm; [15-20[ cm; [20-25[ cm; [25-30[ cm; [30-35[ cm; [35-40[ cmy;
[40-45[ cm; [45-50[ cm; [50-55[ cm. For shrubs, we evaluated the
coverage of each species in each plot, reporting the vertical projection of
foliar area.

We estimated the aboveground tree and shrub biomass using allo-
metric equations. For trees, we first estimated the height of each indi-
vidual tree based on linear regressions using a dataset of species-specific
DBH and height values for all trees found in southern Quebec (Gonzalez,
1990). Then, tree biomass was calculated from our eleven DBH cate-
gories and estimated heights using Ung et al. (2013) allometric equa-
tions developed for each species. Stem, bark, branches, and foliage were
included in biomass estimates. For shrubs, we estimated the volume of
each species by multiplying its % cover by its species-specific mean
height as reported in Rouleau and Brouillet (2002). We then used 3D
models from Flade et al. (2020) to convert each species volume into
biomass. We used the coefficients of the nonlinear least square regres-
sion models (NLS), as these showed the best R-squared values. When
equations were not available for a specific shrub species, we used the
model of the closest species based on phylogeny.

To convert tree and shrub biomass into C content (kg), we used a
conversion factor of 0.498 for soft wood species and 0.521 for hard wood
species (Birdsey, 1992). We then estimated total aboveground C per plot
by summing stocks of trees and shrubs. For belowground woody C, we
only estimated content in tree roots, and based this on ratios of below:
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Fig. 1. Study area (light grey), comprising the Greater Quebec City region and the St. Charles River Basin (the area’s main hydrologic system), where 57 wetlands

were sampled.
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aboveground biomass specific to soft (17 %) and hard (15.5 %) wood
species (Birdsey, 1992). For statistical analyses, we used the mean value
of the two plots in each wetland and reported C stock densities in units of
kg Cm™2

2.3. Profiles of soil decomposition and soil organic carbon

We characterized soil organic C (SOC) contained in peat (in kg C
m~?) at the center of each 400 m? plot used for quantifying woody
biomass, based on von Post humification H values (von Post, 1922;
Grover and Baldock, 2013), following the well-established methodology
of Stanek and Silc (1977). More precisely, we extruded peat samples
until the underlying mineral layer was reached. For the upper 1 m, we
used a one-piece auger (15 x 5 cm), collected samples at depths of 10
cm, 30 cm, 50 cm, and 100 cm, and measured the von Post humification
H value for each. For thicker deposits, we used a Russian borer (50 x 5
cm) to collect samples every additional 50 cm and at the interface of peat
and mineral soil.

We estimated peat C content based on our von Post H values using
relationships observed in the literature between H values, bulk density
(Bd), organic matter (OM) content, and C content. The relationships
between H values and Bd are quite consistent among studies (Boelter,
1969; Silc and Stanek, 1977; Kriiger et al., 2021). We used the equation
of Silc and Stanek (1977). Then, to estimate OM content, we first con-
ducted regressions between Bd and OM content using the dataset of
Loisel et al. (2014), which consists of 127 northern peatlands. The re-
lationships observed based on this dataset varied greatly between bogs
and fens, such that we fitted a separate model for each (Fig. S1). For fens,
the relationship also varied according to peat composition (i.e., peat
dominated by sphagnum, woody compounds, brown moss, herbaceous
plant debris or humified peat). Two groups emerged, one with
sphagnum, herbaceous and woody peat types, and another with brown
moss and humified peat types. Because our sites showed a minimal
amount of brown moss (see Table S1), we excluded these data points
while fitting the models. We also excluded permafrost peatlands since
none of our sites were in such northern conditions. Models for bogs (Eq.
(1)) and fens (Eq. (2); Fig. S1) were fitted with nonlinear least square,
using the Stats package in R (R Core Team, 2020). We tested logarithmic
and exponential relationships, and retained the latter as it resulted in
better model fits. The resulting models relating Bd to OM content were
consistent with those of other studies (Hossain et al., 2015; Kriiger et al.,
2021).

OM(bog) = 102 exp(—0.80 BD) (@))]

OM (fen) = 106 exp( — 2.98 BD) )

We then estimated OM content in each of our samples using these
models and our Bd estimates. We used our fen model (Eq. (2)) for
forested peatlands and swamps because these wetland types showed
decomposition profiles more like those of fens than bogs (see results
below). This similarity likely arose from the prevalence of herbaceous
plants in the understory of forested peatlands and swamps (see
Table S1), as herbaceous residues decompose more rapidly compared to
the Sphagnum biomass dominant in bogs (Barreto and Lindo, 2018). The
presence of roots and oxygen may also explain the greater degree of peat
decomposition observed in top layers of fens, swamps and forested
peatlands (Belyea, 1996; Nordstrom et al., 2022).

Finally, based on our OM estimates, we calculated SOC in each
sample, assuming a 50 % C content (Perie and Ouimet, 2008; Loisel
et al., 2014). For statistical analyses, we used the mean value of the two
quadrats in each wetland.
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2.4. Accounting for soil thickness variability in soil organic carbon
estimates

2.4.1. Peat thickness variability within sites

We measured peat thickness of all 57 sites at three locations along a
transect; i) at the margin, here identified as where plants and soils
became characteristic of wetland conditions, following (Lachance et al.,
2021), ii) near the center (according to georeferenced maps), and iii) at
the midpoint between these two locations. Peat thickness was measured
using probes and extension rods. Two to three measurements were taken
at each location, depending on wetland size, leading to a total of 396
measurements across all 57 wetlands. Since we used metal rods that did
not extract soil samples, we acknowledge that lake-bottom sediments or
mineral layers may also be included in our measurements. To test
whether peat thickness varied between margins, centers and midpoints,
for each wetland type, we log-transformed thickness data for normality
assumption, and conducted pairwise t-tests, using the rstatix package in
R (R Core Team, 2020).

2.4.2. Soil organic carbon density

To evaluate how SOC estimates can vary within each site, depending
on location (margin, midpoint, center), we modeled SOC profiles at each
point where we measured thickness. To do this, we first fitted models
based on our peat core data, relating SOC values to peat thickness (114
cores and 532 samples along profiles) with an exponential decay func-
tion, using the stats package in R (R Core Team, 2020). We did this for
each wetland type separately but grouped swamps and forested peat-
lands since they had similar SOC profiles. We then used these models to
estimate SOC profiles at each point of thickness measurement (396
points in total) and reported these per location and wetland type. To
compare SOC estimates, we log-transformed all values for normality
assumption and conducted pairwise t-tests.

2.4.3. Aggregating SOC values per site: Comparison of approaches

Most studies use the mean of peat thickness measurements to esti-
mate SOC density (kg C m~2) at the site-scale. However, because the
maximum thickness likely occurs over an area that is proportionally
smaller than the thinner surrounding peat, using a simple mean thick-
ness value may result in an overestimation of SOC. We thus applied an
area-weighted mean thickness approach. First, for sites in which the
thickest peat section was located at the center (the dominant configu-
ration observed in our sites), we used a hypothetical circular shape and
computed areal proportions from the three equal parts of the radius (r),
leading to values of 56 %, 33 %, and 11 % for the outer, middle, and
center sections, respectively (Fig. S2). In any case where the thickest
part was located at the margin or at midpoint, we attributed the areal
proportions accordingly: 11 % to the thickest part, 33 % to the middle
part and 56 % to the thinnest part. The area-weighted mean peat
thickness was calculated per site by multiplying thickness values with
these location-specific weighting factors (areal proportions). For each
site, we compared SOC estimates based on the ‘area-weighted mean
thickness approach’ with estimates either observed at wetlands’ thickest
section or based on a ‘simple’ mean thickness approach.

2.5. Upscaling carbon stocks at the regional scale

To evaluate C stock at the scale of the entire study area and examine
its distribution among wetland types, we upscaled our results, obtained
at the 57 sampled sites, to the whole region. To do this, we first calcu-
lated total C stock per site by multiplying C density values in organic
soil, roots, and aboveground C by the area of each wetland and then
fitted linear regressions, per wetland type, between total C stock and
wetland area, using log-transformed values for normality assumption
(Fig. S3; R? = 0.38 for bogs, R? = 0.82 for fens and forested peatlands,
and R? = 0.89 for swamps). We used these models to estimate C stock in
all wetlands of the region, categorized into the four studied types, based
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on their area and type.
3. Results

3.1. Variability in peat decomposition among sites, wetland types, and
along profiles

We observed a general profile of increasingly decomposed peat to-
wards deeper layers, yet with a wide variability among samples,
particularly in the top two meters (Fig. 2a). This variability was related
to the different wetland types (Fig. 2b). Bogs showed less decomposed
peat in the upper sections of the profiles than the three other types.
However, at deeper layers (~250 cm depth), all types appeared to reach
similar levels of decomposition around H values of 8. One bog and two
fens had thicker deposits, near 700 cm, where the degree of decompo-
sition was higher for the bog (H value of 10) than for the fens (H value of
8). Peat in the surface layers (<30 cm) was generally less decomposed in
forested peatlands (H value of ~4) compared to swamps, where the
decomposition levels were also more variable (H value of ~4 to 8). By
converting the profiles of H values into profiles of soil organic C (SOC),
we observed that most SOC was stored in layers below a depth of 1 m
(Fig. 2¢). Indeed, although OM% was lower at greater depths, the higher
bulk density at these depths led to higher SOC values (Fig. S4). Profiles
of SOC differed per wetland type, as shown by the distinct model fits
(Fig. 2¢).
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3.2. Peat thickness and soil organic carbon at different locations within
each site

Peat thickness varied among sites of each wetland type, with more
variability in bogs and fens than in swamps and forested peatlands
(Fig. 3a). Mean thickness at centers reached ~270 cm in open bogs and
fens, with a standard deviation (SD) of ~200 cm, while it reached 34 cm
(SD = 33) and 100 cm (SD = 83) in swamps and forested peatlands,
respectively. For swamps, three sites indicated a mean thickness at
center slightly >30 cm, and one site distinctly stood out as a forested
peatland, with peat thickness reaching 150 cm. Peat thickness also
varied within each individual site, with margins generally thinner than
centers, and to a lesser degree than midpoints, suggesting bowl shapes
for most basins. This was particularly pronounced for fens, with peat
~2.5 thicker at centers, and ~1.9 thicker at midpoints than at margins
on average (with sites showing factors as high as 6.3 for center-margin
difference; Figs. 3a; S5a). In comparison, the difference between cen-
ters and margins was ~1.75 on average in forested peatlands (maximum
of 4.5), and ~1.4 in swamps and bogs (max of 3.4 and 2.6, respectively).
These differences were significant for all wetland types (p < .05) except
for swamps, where the midpoint had generally the thickest peat (sig-
nificant difference with margins; p = .02). Bogs showed the least vari-
ation among locations, indicating flatter basins than the other wetland
types. SOC estimates mirrored the proportional differences and levels of
statistical significance between locations observed for peat thickness
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and type, and whiskers the standard error. In b), boxes represent the inter-quartile range (IQR) of estimates, middle lines show median values, and whiskers extend to
the highest or lowest value no further than 1.5*IQR. SOC values were modeled at each location where peat thickness was measured, based on profiles of SOC
observed from peat core data (see methods). Each datapoint represents the mean value, per location and per site, of the three to four replicates of peat thickness (and

thus of modeled SOC estimates) measured at each location.

(Fig. 3b; Fig. S5b). Mean SOC values at centers were 192 kg C m~2, 200
kg C m 2 38 kg C m 2, and 98 kg C m~2 for open bogs, open fens,
swamps and forested peatlands, respectively. Although the thickest peat
section was predominantly found at the center, several wetlands had
their thickest deposits, and consequently the highest SOC accumulation,
at the margin or midpoint (two bogs, two fens, three swamps, and six
forested peatlands; Fig. S5a).

3.3. Aggregating SOC values at the site scale

SOC values at the site scale differed widely depending on the ag-
gregation approach (Fig. 4). When comparing the approach based on the
thickest section only with the area-weighted mean thickness approach,
which accounted for the bathymetry of the peat basin, we found that the
former consistently resulted in higher SOC estimates. The mean per-
centage difference per type was 28 % for bogs, 53 % for fens, 16 % for
swamps, and 46 % for forested peatlands (Fig. 4a). Values varied widely
among sites within each wetland type, ranging from —1 % to 77 % in
bogs, —46 % to 190 % in fens, —18 % to 70 % in swamps, and — 40 % to
200 % in forested peatlands. Moreover, the ‘simple’ mean thickness
approach also consistently led to higher SOC estimates than the area-
weighted mean thickness approach, (by 11 %, 25 %, 13 % and 21 %
on average for bogs, fens, swamps, and forested peatlands, respectively;
Fig. 4b). Again, differences between these two approaches varied widely

among sites, ranging from 1 % to 24 % in bogs, 2 % to 86 % in fens, 3 %
to 40 % in swamps, and 3 % to 77 % in forested peatlands.

3.4. Aboveground vs. belowground carbon

C was predominantly stored in peat in all wetland types (Fig. 5).
Roots stored a negligible amount of C, with nearly null values for bogs
and fens, and mean values of ~1.5 kg C m~2 in swamps and forested
peatlands (5 % and 3 % of total C density, respectively, and 7.5 % and 3
% of the belowground compartment). The aboveground compartment
also stored a negligible amount of C in bogs and fens yet reached ~8 kg C
m~2 in swamps and forested peatlands on average, representing ~30 %
and ~15 % of their total C density, respectively. This aboveground pool
varied considerably among sites, with values ranging from ~4 to ~10 kg
C m~2 in swamps and forested peatlands. Within-site variability (be-
tween quadrats) of aboveground C density was minimal (Fig. S6), and
although shrubs represented a significant proportion of aboveground C
store in bogs and fens (Fig. S7), their contribution to total organic C
stocks was negligible in all wetland types (<0.1 %). Using the area-
weighted mean thickness approach for the peat compartment, mean
total C density per wetland type reached 133, 102, 27, and 52 kg C m 2
for bogs, fens, swamps, and forested peatlands, respectively.
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Fig. 4. Density plots of the site-by-site difference (%) in SOC values estimated using (a) the wetlands’ thickest section relative to the area-weighted mean thickness,
and (b) the mean thickness relative to the area-weighted mean thickness, per wetland type. Small black lines at the bottom of each distribution represent values for
each individual site. Mean differences per wetland type are also indicated. Under the mean thickness approach, peat thickness measurements within a site had equal
weight when calculating SOC. Under the area-weighted mean thickness approach, each measurement was weighted according to the hypothetical area it represented

within the wetland, thus accounting for peat bathymetry (see methods for details).
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Fig. 5. Comparison of organic carbon stock density (kg C m~2) between
aboveground and belowground compartments, and among wetland types. Bars
represent mean values per wetland type, with error bars showing the standard
deviation. Soil organic carbon estimates accounted for the bathymetry of peat

basins using the area-weighted mean thickness approach (see methods
for details).

3.5. Upscaling carbon stocks at the regional scale

Although swamps and forested peatlands had lower C density on an
areal basis than bogs and fens (Fig. 5), they represented the predominant
sites for C storage at the study region scale, due to their high abundance
(Table 2). Bogs and fens accounted for only 4 % and 10 % of the total
organic C stocks in wetlands at the scale of the study region, respec-
tively, while the contribution of swamps reached 38 % and that of
forested peatlands was 49 %. Together, these four types of wetlands
were estimated to store 1834 kT C within the region (95 % confidence
intervals of 1167-3083 kT C).

4. Discussion

This study showed that C stock density varies among wetland types.
Peat was consistently the predominant carbon storage component (be-
tween 70 % to ~100 %), compared to roots and aboveground biomass.
We showed that peat thickness varied significantly at the site-scale and
that considering the bathymetry of peat basins is essential for increasing
the accuracy of C stock estimates. Relying on maximum thickness alone
to evaluate peat C stock led to estimates 38 % higher on average than
when accounting for bathymetry, with sites reaching overestimates of
up to 200 %. Using mean thickness minimized this tendency, yet still led
to values 19 % higher on average than when accounting for bathymetry
via the area-weighted mean thickness approach. Finally, we showed that
while bogs and fens can store more carbon than swamps or forested
peatlands on an areal basis, the latter types represented the main C
stocks at the scale of the study region because of their high abundance in

Table 2

Upscaled estimates of wetland total C stocks at the study region level, with 95 %
confidence intervals (CI). Estimates were upscaled based on relationships
observed in sampled wetlands between C stock and site area (Fig. S3).

Wetland type Total C stock (kT C)

Mean (95 % CI)

Bogs 73 (24-263)
Fens 181 (101-337)
Swamps 688 (480-1012)
Forested peatlands 892 (562-1471)
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the landscape.
4.1. Variability in C density estimates

Our estimates of C contained in the aboveground woody biomass of
swamps and forested peatlands are comparable to those recently re-
ported for forests in our study region (Sothe et al., 2022; 6-8 kg C m ™2
for aboveground biomass and 1.3 kg C m~?2 for roots). Lower values
(1.5-5 kg C m™2) were also reported for forested peatlands in the
province of Quebec (Magnan et al., 2020). However, these are likely
influenced by the authors’ exclusive focus on bogs in higher latitudes
compared to ours, two factors known to limit productivity (Thormann
and Bayley, 1997; Bubier et al., 1999). In the case of SOC, our mean
estimates are also well aligned with those of previous studies, showing
larger deposits in non-forested than in forested wetland sites (Makila
and Goslar, 2008; Beaulne et al., 2021). However, our estimates varied
widely among sites of each wetland type, as well as between plots within
the same site (particularly for fens; Fig. S6). This variability can be
explained by multiple factors. Hydrology and geomorphology are
perhaps the main drivers of peatland formation processes and peat
accumulation rates, with terrestrialization (lake in-filling) potentially
leading to deeper peat deposits than paludification (lateral expansion of
peat over mineral soil; Bauer et al., 2003; Rydin et al., 2013). Others
have also reported the influence of peat composition on C stocks, with
‘Sphagnum peat’ having lower C content than ‘non-Sphagnum peat’
(Loisel et al., 2014, 2017), a distinction we accounted for in this study
(Fig. S1). Distinguishing the nature of peat composition is particularly
useful when estimating C stocks, since it is easier to determine during a
field campaign than the geomorphology and/or formation process of a
site.

4.2. Importance of peat bathymetry

Although our sampling design (transects from margin to center) only
partially addresses the problem of peat thickness variability within sites,
our protocol captured enough variability to enable comparison of ap-
proaches for estimating SOC at the site-scale. Large overestimates based
on the thickest section only (compared to estimates of the area-weighted
mean thickness approach) were observed for sites that showed wide
variability in peat thickness. The topography underneath peat deposits
was more homogeneous in bogs and swamps in general (flatter peat
basins) than that below fens and forested peatlands, explaining the
smaller overestimates observed in these ecosystems. Our mean over-
estimate of 38 %, with fens and forested peatlands reaching over-
estimations of up to 200 %, align with the few previous studies that have
considered peat bathymetry in their C stock estimates. For example,
while Van Bellen et al. (2011) and Loisel et al. (2014) reported over-
estimates in the range of 23 to 61 % for northern bogs, another study,
based on 28 sites in southeastern Canada, including bogs, fens, and
forested peatlands, also showed overestimations reaching ~200 %
(Major, 2020). Such large overestimates can be explained by sites with
highly heterogeneous peat basins, with the thickest peat sections rep-
resenting only a small areal proportion of the site. These results are of
great importance since large scale C stock estimates rely on averaged
values from wetland C stock studies, which most often consist of a
limited amount of peat cores often collected at wetlands’ center or in
their thickest section for paleoecological purposes (Loisel et al., 2017).

Although the complete characterization of peat bathymetry is likely
the ideal way to address the issue of overestimation, it is hardly feasible
for large scale regional assessments. While methods such as ground
penetrating radars (Carless et al., 2021) may facilitate such analyses,
partial thickness sampling and mean thickness estimates are still often
used as a compromise for approximating peat bathymetry in C stock
calculations. Yet, as shown here, this strategy may still overestimate SOC
by 19 % on average (with values ranging from 1 % to 86 % among sites)
by giving a disproportionate weight to wetlands’ thickest section. We

Science of the Total Environment 946 (2024) 174177

acknowledge that the area-weighted mean thickness approach used here
only approximates the actual peat bathymetry, and caution is warranted
in interpreting the reported overestimation. Nevertheless, this approach
yielded SOC estimates similar to those of previous studies that charac-
terized peat bathymetry in more detail, particularly Major (2020).

4.3. Upscaling C stocks at regional levels and importance for decision
making

The larger C stocks in the belowground wetland compartments
compared to aboveground ones could be easily attributed to peat
accumulation over millennia, whereas forests develop over mere de-
cades. However, even when comparing these two compartments on the
same timescale, Beaulne et al. (2021) reported higher rates of C
sequestration by peat compared to overlying tree biomass by a factor of
more than two. From this perspective, peatlands may not only represent
valuable ‘immobilized’ C reservoirs, but also highly efficient ecosystems
for mitigating climate change through high C sequestration rates.

Additionally, our study underscores the disproportionate C seques-
tration role of wetlands’ belowground compartments per unit area
compared to surrounding forests. Using our aboveground C stock esti-
mates of swamps and forested peatlands as a proxy for forest biomass C
storage capacity (comparable to values reported by Sothe et al. (2022)
for forests in our study region), and estimating SOC density in forested
soils at 8 kg m~2 based on Bhatti et al. (2006) for the Canadian boreal
zone, we estimated that forests within our study region may store ~8400
kT C (half aboveground half belowground). Based on our mean estimate,
the four wetland types considered in this study store 1834 kT of carbon
(95 % confidence interval: 1167-3083 kT). Despite covering only 12 %
of the wetland-forest area in our study region (excluding the three other
wetland types; see methods), they contribute 18 % (confidence interval:
12 % to 27 %) to the total organic C pool in the area. This estimate aligns
closely with the average 32 % recently reported for Canada as a whole
by Sothe et al. (2022), noting that this higher value of wetland contri-
bution includes peatland hotspots like the Hudson Plains Ecozone.

Forested peatlands, and swamps in particular, revealed their unrec-
ognized importance in storing carbon at the regional scale mainly due to
their high abundance, a result also observed in previous studies focused
on North American ecosystems (Ott and Chimner, 2016; Byun et al.,
2018; Davidson et al., 2022). Swamps may have been considered ‘less
valuable’, partially because of their lower C stock per unit area and
sometimes small size, leading to their destruction for urban or agricul-
tural development (Van Meter and Basu, 2015; Poulin et al., 2016;
Davidson et al., 2022). The difficulty in mapping these wetlands due to
canopy cover and their lower prevalence of rare species also likely
contributed to their fragmentation and loss. But interestingly, such
wetlands have also been shown to be particularly efficient at regulating
river flows, thus mitigating floods and drought events, which are ex-
pected to increase in frequency and severity with climate change (Fossey
et al., 2016; Ameli and Creed, 2019; Goyette et al., 2022). While regu-
latory programs mandating compensation for lost ecological functions
through wetland restoration do exist, studies have demonstrated that
these functions can take decades to reestablish, especially in small
depressional wetlands like swamps (Moreno-Mateos et al., 2015). This
underscores the asset these ecosystems represent for climate change
mitigation efforts, and emphasizes the necessity for enhancing their
protection (Schuster et al., 2024). Moreover, it has been shown that
protecting a diversity of wetlands is necessary to support multiple
ecosystem functions and services since these vary significantly by
wetland type (Loiselle et al., 2023). Particularly within resource
extraction contexts such as forestry, further research is needed to assess
the most effective management practices to minimize impacts on other
ecosystem services.
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5. Conclusions

Human activities continue to cause the degradation of most wetland
types worldwide. Drainage of peatlands for agriculture, forestry, peat
extraction, and grazing have together been identified as the primary
causes of wetlands loss and degradation in the last 300 years, and these
multiple drivers are expected to be amplified in the future (Loisel et al.,
2021; Fluet-Chouinard et al., 2023). This degradation is thought to turn
peatlands from sinks to sources of CO, and other greenhouse gases
(Leifeld and Menichetti, 2018), such that halting and reversing this
wetland decline is becoming essential (Griscom et al., 2017; Drever
et al., 2021). To guide conservation planning, time efficient approaches
are needed to best evaluate C stock variability within and among wet-
lands at the regional scale. Our study presents a simple methodology for
doing so. Estimating SOC based on the degree of peat humification is a
straightforward and effective field approach, and characterizing com-
plete SOC profiles may be required since SOC density varies with peat
depth. Importantly, our work has contributed to advancing this field by
emphasizing the importance of accounting for peat bathymetry at the
site-level as a prerequisite for obtaining more accurate SOC estimates.
Additionally, we have shown that the soil compartment can store
significantly more C than the aboveground compartment, even in
swamps. Given the varying proportional contributions from above and
belowground compartments among different wetland types, and the
disparate timescales involved in C stock build-up, integrating this in-
formation into land management planning is essential for decision
makers.
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